

Panda Polarization-Maintaining Fiber for Fiber Optic Gyroscopes – PM1310-80-6.0/165 with 165?m Thin Coating

Product Overview

Fabricated via the Modified Chemical Vapor Deposition (MCVD) process, this pandatype PM fiber integrates two boron-doped stress-applying parts (SAPs) symmetrically positioned around a germanosilicate core to induce strong linear birefringence. The result is exceptional polarization maintenance with crosstalk ≤ -25 dB per meter at 1310 nm, enabling high polarization extinction ratio (PER) in interferometric loops.

The fiber features a reduced 165 μ m dual-layer acrylate coating—ideal for densely wound FOG sensing coils where space and mass are critical. Despite its thin coating, it maintains \geq 100 kpsi proof tension screening and excellent bending stability, ensuring mechanical robustness during coil winding and long-term operation in dynamic environments.

Technical Specifications

Brand Name	Winner
Model Number	PM1310-80-6.0/165

Fiber Type	Panda-Type Polarization-Maintaining Single-Mode Fiber
Operating Wavelength	1310 nm
Attenuation	≤0.8 dB/km @1310 nm
Mode Field Diameter	$6.0 \pm 0.5 \mu \mathrm{m}$ @1310 nm
Cut-off Wavelength	1100–1270 nm
Cladding Diameter	$125\pm1\mu m$
Coating Diameter	$165\pm 5\mu m$
Polarization Crosstalk	≤ -25 dB per meter @1310 nm
Bow (Shoot Length)	≤ 3.0 mm per meter
Tension Screening Level	≥100 kpsi
Manufacturing Process	Modified Chemical Vapor Deposition (MCVD)
Key Performance	High geometric uniformity Low splicing loss with rotational alignment Excellent coil-winding compatibility Stable birefringence under thermal cycling

Applications

- Fiber optic gyroscopes (FOGs) for aerospace, navigation, and stabilization systems
- Polarization-maintaining couplers and interferometers
- Laser diode pigtails requiring polarized output
- Fiber-based current and magnetic field sensors
- Test and measurement setups for polarization-dependent devices

Handling & Integration Notes

For optimal performance in FOG applications, maintain consistent winding tension and avoid sharp bends (10 mm radius). Use a rotational fusion splicer to align the slow axis (marked by SAP orientation) with adjacent components. The thin 165 μ m coating reduces coil volume by ~30% compared to standard 245 μ m fibers, but requires careful handling to prevent microcracking during stripping.